REGIONE PIEMONTE PROVINCIA DI BIELLA COMUNE DI CAMPIGLIA CERVO

IMPIANTO DI PRODUZIONE IDROELETTRICA "CAMPIGLIA"

Bacino Idrografico: FIUME CERVO Corso d'acqua interessato: CONCABBIA-CERVO

SIPEA SRL

RELAZIONE TECNICA MONITORAGGIO ANTE OPERAM

Studio Ethos srl Sede Legale: via Repubblica 41, 43121, Parma P.IVA/CF: 02706820343

Programma di monitoraggio Fase ante operam – Anno 2021

Sommario

I	Pre	emessa	3
2	Pro	ogramma di monitoraggio	3
3		ti tecnici	
4		ultati	
	4.1	Analisi chimiche	7
	4.2	Idromorfologia fluviale	9
	4.3	Comunità bentonica	14
	4.3.1 4.4	I STAR-ICMi	16
5	Co	onsiderazioni conclusive	20
A	llegati	i	21
		ti prova analisi chimiche	
	Schede	funzionalità fluviale	28
	Verbale	e recupero ittico	30

1 PREMESSA

La presente relazione riassume le attività di monitoraggio svolte per la caratterizzazione del torrente Concabbia in fase *ante operam*, immediatamente prima l'attivazione dell'impianto idroelettrico denominato "Campiglia" poi realizzato e attivato nel 2021-2022.

2 Programma di monitoraggio

Segue il prospetto sintetico del programma di monitoraggio, opportunamente adeguato alle tempistiche di riferimento di cui al DM 260/2010.

Programma di monitoraggio												
CHIOBBIA	А	Ante operam* Post Operam										
Anno 0			Anno 1			Anno 2		Anno 3				
Osservazioni	02/21	06/21	10/21	1	2	3	1	2	3	1	2	3
Indagini chimico fisiche	X	X	X	X	X	X	X	X	X	X	X	X
Idromorfologia e funzionalità	1		X									X
Macroinvertebrati	×	Х	Χ	X	X	X	X	X	X	X	X	X
Fauna Ittica*						X			X			X

Tabella 1:attività previste per il monitoraggio ante operam. In grassetto verde le fasi svolte.

3 DATI TECNICI

Seguono i dati relativi all'impianto e alla tipologia di attività svolta.

	Inqua	adramento geografio	00				
Regione: Piemonte	Provincia Biella		Comune:	Campiglia	Località:		
			Cervo				
Date 18 marzo 2021-8 giugno 2021-6		Operatori: Dott. F. Gatti, Dott. M. Dall'Argine					
ottobre 2021							
	D	ati tecnici impianto					
	-	Tipologia impianto	Acqua fluente				
	Portata mass	sima derivabile [l/s]	170				
	Portata me	edia derivabile [l/s]	61,8				
	Potenza media di	concessione [kW]	80,27				
	Inquad	Iramento idroecolog	gico				
Idroecoregione 1	Tipo fluviale: 01SS	12N	Corpo idrico: IT0101SS2N105PI				
Stato ecologico ufficiale - PdGBPo		Non tipizzato					
Stato Ecologico Monitoraggio Piemonte		Non monitorato					
Tipo di monitoraggio	Indagine ecologica	complessiva					

Il letto del fiume è visibile?	Si
Raccolta 10 repliche effettuata in:	generico
Raccolta 4 repliche (se previsto) effettuata in:	Non applicabile
Tipo di retino utilizzato:	retino immanicato
Superficie totale campionata:	1 m ²
Indagini di supporto:	Macrodescrittori Chimici, Idromorfologia
Stazioni di Campionamento	o (Sistema riferimento UTM WGS84 32 N)
CON monte	X: 421858 - Y 5058249
CER-SOTT-CAMP sotteso	X: 421246 - Y 5057867
Corografia	
Centrale di produzione	Concabbia Impianto idroelettrico Campiglia Opera di presa (Attuale) Dissabbiatore (Attuale)
Migliacco 200 m	Centrale di produzione Condotta Forzata Condotta Forzata ACT O Stazioni monitoraggio Campiglia

Tabella 2:Quadro generale opera e inquadramento delle attività di monitoraggio.

Figura 1: immagini della stazione Conc Monte. In A fase di raccolta (feb. 2021), in B e C dettagli del sito di campionamento.

Figura 2: immagini della stazione Conc Monte. In A fase di raccolta (giu. 2021), in B e C dettagli del sito di campionamento.

Microhabitat Macro Mega 30 70 [%]

Figura 3 stazione di Monte A) visione del tratto di campionamento verso monte. B) visione diretta del transetto. C) visione del tratto a valle

Figura 4:immagini della stazione Cer Sot.Cam In A fase di raccolta (feb. 2021), in B e C dettagli del sito di campionamento.

Figura 5:immagini della stazione Cer Sot.Cam In A fase di raccolta (giu. 2021), in B e C dettagli del sito di campionamento.

Microhabitat Ghiaia Meso Macro Mega 30 40 10 20

Figura 6: stazione di valle-A) visione del tratto. B) visione di valle. C) Momento del campionamento

4 RISULTATI

Si riportano i risultati delle analisi condotte nel corso del monitoraggio Ante operam rispettivamente per gli indicatori presi in considerazione

4.1 Analisi chimiche

			Monit	oraggio Concab	bia - Cervo - F	ase AO	
		1 OSS AO (Feb. 2021)		2 OSS AO (Mag. 2021)		3 OSS AO (Ott. 2021)	
Parametro	U.M.	Conc Mon	Cer Sot	Conc Mon	Cer Sot	Conc Mon	Cer Sot
Temperatura	°C	6,1	6	11,9	13,3	13,8	15,8
рН		7,23	7,2	7,5	6,5	7,71	7,24
Ossigeno disciolto	mg/l	10,9	11	10	10,5	10,5	9,4
Saturazione	%	100%	100%	104%	114%	117%	108%
Conducibilità	μS/cm	14,0	12,0	33,0	11,3	27,6	100,0
COD	mg/L	5,10	4,30	1,00	1,00	2,00	2,00
BOD₅	mg/L	3,00	2,00	1,00	1,00	2,00	2,00
Azoto ammoniacale (N-NH4)	mg/L	0,03	0,03	0,01	0,02	0,01	0,01
Azoto Nitrico (N-NO ₃)	mg/L	0,32	0,36	0,16	0,28	0,9	0,8
Fosforo totale (P _{tot})	mg/L	100	100	100	100	100	100
Escherichia coli	n°/100ml	99	99	100	100	100	100

Tabella 3: complessivo dei dati chimici rilevati sia in campo che a seguito delle analisi di laboratorio.

I risultati delle analisi sono stati messi in relazione ai parametri definiti per l'indice LiMeco:

Stato	LIMeco	Colore convenzionale
Elevato*	≥0,66	
Buono	≥0,50	
Sufficiente	≥0,33	
Scarso	≥0,17	
Cattivo	< 0,17	

Tabella 4: soglie per l'assegnazione della classe di qualità dell'indice LIMeco (DM260/2010)

I dati chimici dei campioni sono riportati in forma completa negli allegati alla presente relazione. I parametri di significato ecologico generale (pH, Conducibilità, Saturazione) si mantengono entro livelli adeguati al tipo fluviale. I parametri funzionali al LIMeco mostrano valori compatibili coi dati attesi.

		Monitoraggio	Concabbia - Co	ervo - Fase AO				
		1 OSS AO	1 OSS AO			3 OSS AO		
Parametro	U.M.	Conc Mon	Cer Sot	Conc Mon	Cer Sot	Conc Mon	Cer Sot	
Saturazione	%	1	1	1	1	1	1	
Azoto ammoniacale (N-NH4)	mg/L	0,5	0,5	1	1	1	1	
Azoto Nitrico (N-NO3)	mg/L	1	1	1	1	0,5	0,5	
Fosforo totale (Ptot)	mg/L	0,5	0,5	0,5	0,5	0,5	0,5	
LIMeco		0,750	0,750	0,875	0,875	0,750	0,750	
Livello		ELEVATO	ELEVATO	ELEVATO	ELEVATO	ELEVATO	ELEVATO	

Tabella 5 Tabella 10: valori dell'indice LIMeco applicato ai dati sperimentali.

4.2 Idromorfologia fluviale

La valutazione di un corso d'acqua attraverso l'Indice di Funzionalità Fluviale (IFF) è una procedura ormai diffusa e applicata sull'intero territorio italiano. L'indice elaborato da Siligardi (2007) rappresenta l'ultima revisione del metodo che ha adottato importanti accorgimenti specificatamente rivolti agli aspetti più puramente ecologici, laddove nelle versioni precedenti il metodo appariva leggermente sbilanciato nei confronti di aspetti idraulici.

La revisione del 2007, che viene qui applicata attribuisce maggior peso ad aspetti come la vegetazione riparia (assegnando ad esempio funzionalità elevata anche a formazioni non strettamente riparie ma ben conformate) o la macrofauna bentonica, la quale ha un peso massimo di 20 punti.

Di seguito si presentano i risultati dell'analisi di funzionalità svolta sul Cervo e sul Chiobbia nel tratto interessato dalle opere, applicando i medesimi tratti omogenei già valutati nelle precedenti indagini svolte tra il 2013 e il 2015). Il tratto indagato coincide con quello individuato per l'analisi morfologica (in allegato si possono consultare le schede tecniche compilate su campo).

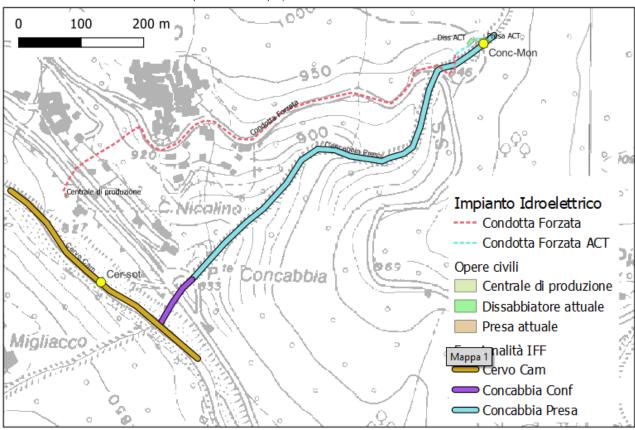


Figura 7: tratti omogenei sottoposti ad analisi di funzionalità.

I risultati dell'analisi di funzionalità coincidono con quelli già depositati, non avendo riscontrato differenze rispetto alla condizione osservata nel 2013¹. sono riportati nella tabella seguente.

	Concabb	ia - Funziona	ılità complessiv	/a		
Tratto	Lunghezza	Funzionalità reale	Giudizio	%su tratto	Funzionalità potenziale	Rapporto
			OTTIMO-			
1	646	256	BUONO	89%	266	96%
2	77	260	OTTIMO	11%	280	93%
Totale tratto sotteso	723					
Funzionalità ponderata		256				
Giudizio complessivo		OTTIMO- BUONO				
Totale superficie	7752					
Funzionalità differenziale (Ve	getazione)					
Tratto	Lunghezza	RS	Giudizio	%su tratto	RD	
1	646	70	OTTIMA	89%	70	FALSO
2	77	50	MEDIOCRE	11%	50	MEDIOCRE
Totale tratto sotteso	723					
Funzionalità complessiva		60				
Giudizio complessivo		OTTIMA				
Funzionalità differenziale (Sp	onde)		<u> </u>			
Tratto	Lunghezza	RS	Giudizio	%su tratto	RD	
1	646	51	MEDIOCRE	89%	51	MEDIOCRE
2	77	85	OTTIMA	11%	85	FALSO
Totale tratto sotteso	723					
Funzionalità complessiva		68				
Giudizio complessivo		BUONA				

Tabella 6: risultati dell'applicazione dell'indice di funzionalità fluviale relativa al Tratto di Concabbia interessato dalla derivazione.

¹ Fatta salva la variazione dell'indicatore relativo alla sezione trasversale che, per un errore materiale fu valutato con punteggio 10, anziché 1, come riportato in questa relazione.

Figura 8: immagine rappresentativa del tratto Conc (IFF 1) nel tratto interessato dall'opera di presa.

Figura 9: immagine rappresentativa del tratto Conc (IFF 1) nel tratto compreso tra i 2 ponti che lo oltrepassano.

Figura 10: immagine rappresentativa del Concabbia in prossimità della confluenza con il Cervo tra i due ultimi ponti.

	Cervo - Funzionalità complessiva										
Tratto	Lunghezza	Funzionalità reale	Giudizio	%su tratto	Funzionalità potenziale	Rapporto					
1	405	233	BUONO	100%	318,5	73%					
Totale tratto sotteso	405										
Funzionalità ponderata		233									
Giudizio complessivo		BUONO									
Totale superficie	10028										
	Funzionalit	tà differenzia	le (Vegetazio	ne)							
Tratto	Lunghezza	RS	Giudizio	%su tratto	RD						
1	405	16	PESSIMA	100%	40	SCADENTE					
Totale tratto sotteso	405										
Funzionalità complessiva		16									
Giudizio complessivo		PESSIMA									
	Funzion	 alità differenz	<u> </u> ziale (Sponde	<u> </u>							
Tratto	Lunghezza	RS	Giudizio	%su tratto	RD						
1	405	80	OTTIMA	100%	80	OTTIMA					
Totale tratto sotteso	405										
Funzionalità complessiva		80									

Giudizio complessivo OTTIMA

Tabella 7: risultati dell'applicazione dell'indice di funzionalità fluviale relativa al Tratto di Cervo sotteso.

Figura 11: immagine rappresentativa del tratto CER SOT CAM.

La funzionalità si attesta su un valore Ottimo-Buono per il Concabbia e Buona per il Cervo, confermando il quadro territoriale ed ecologico delineatosi dagli strumenti di pianificazione, dai dati di letteratura oltre che dalle indagini pregresse condotte. Da quanto emerso dall'analisi risulta una condizione complessiva di modesta interferenza antropica sia sul Concabbia, sia sul Cervo. Nei Concabbia le evidenze di tali pressioni sono rappresentate dalla presenza di elementi di artificializzazione delle sponde (i 3 ponti che attraversano il torrente) che tuttavia sono puntiformi e non sufficientemente estesi per modificare la natura idromorfologica dei tratti indagati. Nel Cervo la natura di tali pressioni è riscontrabile in alcune variazioni della componente vegetazionale, che risulta alterata nello spessore.

4.3 Comunità bentonica

Nelle stazioni individuate si è proceduto al campionamento secondo il protocollo multi habitat proporzionale, in coerenza con il metodo di cui in Buffagni & Erba 2007.

I dati rilevati nel campionamento sono stati processati secondo la procedura Macroper, che consiste nell'utilizzo di 6 metriche descrittive dei principali aspetti ecologici del corso d'acqua, propedeutiche al calcolo dell'indice multimetrico STAR IcMI.

Tipo di informazione	Tipo di metrica	Nome della Metrica	Taxa considerati nella metrica	Rif. Bibliografico	Peso
Tolleranza	Indice	ASPT	Intera comunità (livello di famiglia)	e.g. Armitage et al., 1983	0.333
Abbondanza/ Habitat	Abbondanza	Log ₁₀ (Sel_EPTD +1)	Log ₁₀ (somma di Heptageniidae, Ephemeridae, Leptophlebiidae, Brachycentridae, Goeridae, Polycentropodidae, Limnephilidae, Odontoceridae, Dolichopodidae, Stratyomidae, Dixidae, Empididae, Athericidae e Nemouridae +1)		0.266
	Abbondanza	1-GOLD	 (Abbondanza relativa di Gastropoda, Oligochaeta e Diptera) 	Pinto et al., 2004	0.067
Ricchezza /Diversità	Numero taxa	Numero totale di Famiglie	Somma di tutte le famiglie presenti nel sito	e.g. Ofenböck et al., 2004	0.167
	Numero taxa	Numero di Famiglie di EPT	Somma delle famiglie di Ephemeroptera, Plecoptera e Trichoptera	e.g. Ofenbock et al., 2004; Böhmer et al., 2004.	0.083
	Indice Diversità	Indice di diversità di Shannon- Wiener	$D_{s-w} = -\sum_{i=1}^{s} \left(\frac{n_i}{A}\right) \cdot \ln\left(\frac{n_i}{A}\right)$	e.g. Hering et al., 2004; Böhmer et al., 2004.	0.083

Tabella 8: identificativo delle sei metriche componenti l'indice STAR_IcMI e loro peso relativo.

La procedura di calcolo dello STAR_IcMI prevede che le singole metriche, una volta calcolate, vengano normalizzate, rispetto ai valori di riferimento (contenuti nel D.M. 260/2010 e specifici per ogni singola tipologia fluviale). Il risultato, espresso tra 0 e 1, è chiamato "RQE" (Rapporto di Qualità Ecologica) e deve essere moltiplicato per il peso attribuito ad ogni metrica. L'indice multimetrico preliminare è ottenuto dalla somma delle sei metriche normalizzate e "pesate".

Dopo il calcolo della somma, il valore risultante viene nuovamente normalizzato con il valore di riferimento contenuto nel citato DM, ottenendo così lo STAR_lcMl.

Tipologia	Microhabitat	ASPT	N_Fam	N_EPT_Fam	1-GOLD	Diversità di Shannon	log(SeIEPTD +1)	STAR_ICMi	Elevato/Buon o	Buono/Suffici ente	Sufficiente/Sc arso	Scarso/Cattiv o
01 PI	Generico	6,824	19	11	0,861	1,78	2,682	1,01	0,95	0,71	0,48	0,24

Tabella 9: valori di riferimento delle metriche che costituiscono lo STAR_IcMI.

Il valore ottenuto viene interpretato dal punto di vista ecologico, all'interno di intervalli (anch'essi specifici per ogni tipologia di corso d'acqua e definiti nel DM 260/10) attraverso i quali definire il giudizio di qualità ecologica della comunità.

Valori RQE	STAR icmi	Colore convenzionale
RQE = 0,95	elevato	
0,71 = RQE < 0,95	buono	
0,48 = RQE < 0,71	sufficiente	
0,24 = RQE < 0,48	scarso	
RQE < 0,24	cattivo	

Tabella 10: Limiti di classi fra gli stati per il fiume Cervo

Si è proceduto alla raccolta in situ dei campioni seguita da identificazione e conta, riportando in laboratorio gli esemplari scelti per approfondimenti e per documentazione fotografica.

Stazione	1 OSS AO	1 OSS AO	2 OSS AO	2 OSS AO	3 OSS AO	3 OSS AO
	Conc Mon	Cer Sot Cam	Conc Mon	Cer Sot Cam	Conc Mon	Cer Sot Cam
	Freq.	Freq.	Freq.	Freq.	Freq.	Freq.
PLECOPTERA						
Leuctridae	40	60	120	0	40	30
Nemouridae	161	21	1112	1	450	31
Perlodidae	10	1	1	0	40	1
Perlidae	0	1	0	0	0	0
Chloroperlidae	0	0	0	0	0	0
Taeniopterigidae	30	160	0	0	0	0
EPHEMEROPTERA						
Baetidae	130	160	330	20	2540	2850
Heptagenidae	31	150	51	41	110	10
Ephemerellidae	0	0	80	0	0	20
Leptophlebidae	1	0	1	1	10	0
TRICHOPTERA						
Hydropsichidae	1	1	30	0	30	70
Rhyacophilidae	10	1	30	1	40	20
Philopotamidae	1	10	10	0	1	0
Sericostomatidae	0	1	1	0	1	0
Limnephilidae	1	10	0	0	0	0
Glossosomatidae	0	0	0	0	0	0
Brachycentridae	0	0	0	0	0	0
Goeridae	0	0	0	0	1	0
Hydroptilidae	1	0	0	0	0	0
DIPTERA						
Chironomidae	260	1490	500	1920	60	70
Simulidae	40	350	80	0	230	20
Athericidae	0	0	1	0	0	1
Empididae	0	0	0	0	0	1
Psychodidae	1	0	0	0	0	0
Dixidae	0	0	0	0	0	0
Tipulidae	0	0	1	0	0	0

Blephariceridae	0	0	0	0	20	30
Limonidae	1	0	0	0	1	1
Ceratopogonidae	0	0	0	0	1	0
COLEOPTERA	0	0	0	0	0	0
Elmintidae	30	10	50	1	20	1
Hydraenidae	0	0	10	0	60	0
Helodidae	0	0	1	0	1	0
Dytiscidae	0	0	1	0	1	0
ALTRI	0	0	0	0	0	0
HYDRACARINA	1	0	0	0	1	0
Dugesiidae	1	0	0	0	1	0
Oligocheta	0	0	10	0	0	1

Tabella 11: spettro della comunità bentonica nelle stazioni indagate durante il periodo di indagine.

Nel complesso la comunità macrobentonica si è dimostrata essere in generale ben strutturata e composta da tutti i principali gruppi funzionali, spesso presenti in quantità adeguate e in rispettivo equilibrio. Da rilevare come i dati della 2 Osservazione vanno considerati parzialmente validi poiché inficiati dagli effetti di eventi di piena stagionale avvenuti nelle settimane precedenti il campionamento. Tali eventi hanno molto probabilmente avuto effetti differenziati in funzione delle caratteristiche sito specifiche delle stazioni indagate hanno comportato azione differenziale dei fenomeni di trasporto e di drift dei diversi gruppi funzionali. Le alterazioni nella composizione della comunità hanno generato alterazioni nell'indice di qualità finale che nella stazione Cer Sot Cam ha prodotto un anomalo calo della presenza di plecotteri, mentre nella stazione Conc si è rilevata una abnorme presenza di questi ultimi.

4.3.1 STAR-ICMi

	Stazioni					
Metriche di base	1 OSS	1 OSS AOCer	2 OSS	2 OSS AOCer	3 OSS	3 OSS
	AOConc Mon	Sot	AOConc Mon	Sot	AOConc Mon	AOCer Sot
ASPT	0,316	0,358	0,307	0,314	0,313	0,305
N tot Famiglie	0,167	0,132	0,176	0,062	0,193	0,141
N famiglie EPT	0,091	0,091	0,083	0,038	0,083	0,060
1-GOLD	0,047	0,019	0,059	0,003	0,071	0,075
H'	0,088	0,062	0,078	0,008	0,056	0,024
Log sel_EPTD	0,227	0,224	0,304	0,163	0,273	0,163
STAR ICMI GREZZO	0,935	0,885	1,007	0,587	0,990	0,768
STAR ICMI NORM	0,928	0,878	0,999	0,582	0,982	0,762
Livello	Buono	Buono	Elevato	Sufficiente	Elevato	Buono

Tabella 12: valori dell'indice STAR ICMI rispettivamente per le osservazioni Ante Operam svolte nel 2021.

Il livello medio di qualità denota una generale condizione di modesta alterazione rispetto alla condizione ottimale della stazione Conc Mon, con valori che si collocano a cavallo della soglia Buono/Elevato e che possono essere imputati a fattori intrinseci. La stazione Cer Sot Cam, si mantiene sostanzialmente entro un livello buono con

fluttuazioni che pur scendendo sotto la soglia sono da considerarsi fisiologiche e connesse con le dinamiche idrologiche che caratterizzano entrambe i corsi d'acqua. In un contesto di tale variabilità si possono considerare entrambe le comunità osservate ad un livello buono di qualità.

Tale condizione di qualità coerente con i livelli di riferimento normativo, è il risultato dell'azione combinata di fattori intrinseci e di fattori anche antropici per il tratto di Cervo e per il tratto di Concabbia.

I valori di qualità osservati risultano altresì coerenti con quanto osservato in precedenti fasi di campionamento svolte nel 2013 durante l'iter di autorizzazione, nel corso delle quali emergeva un livello elevato (20 unità sistematiche e indice IBE 10 nel Concabbia e 13-15 unità sistematiche nel Cervo con indice pari a 9). Al netto dell'impossibilità di confrontare direttamente i due indici applicati, i risultati delle due metodologie concordano nell'interpretazione dei valori osservati, concordando su due sistemi fluviali con modeste evidenze di alterazioni della comunità.

.

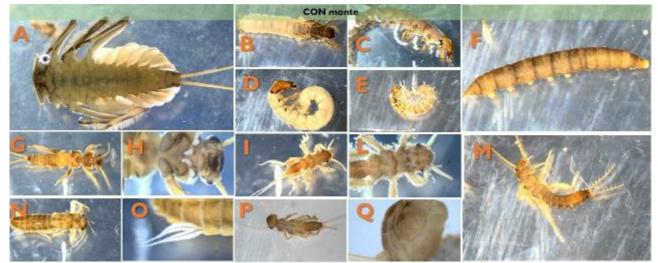


Figura 12:selezione fauna stazione Monte foto Studio ETHOS A)Heptagenidae B) Limnephilidae C) Riacophilidae D) Philopotamidae E) Hidropsichidae F) Limonidae G e H) Protonemoura con evidenza delle branchie I e L) Anphinemoura e evidenza delle branchie M) Leuctra N e O) Leptophlebidae e evidenza delle branchie P e Q) Perlodidae e evidenza della mandibola

Figura 13 selezione fauna stazione Sotteso foto Studio ETHOS :A e B) Perlidae C e D) Protonemoura con evidenza delle branchie E) Limnephilidae F) Riacophilidae G) Heptagenidae ripiegato su se stesso H) Nemouridae. I) Protonemoura. L).Leuctridae M) Taeniopterigydae. N) Perlodidae

4.4 Comunità ittica

Il 20 settembre 2021 è stato effettuato il recupero ittico sul torrente Concabbia con la finalità di rimuovere, entro un tratto sufficientemente esteso a garantire l'incolumità della fauna ittica.

Il prelievo è stato svolto da tecnici abilitati che, nel corso dell'operazione hanno prelevato tutto il materiale ittico presente in alveo.

Dal verbale di recupero emesso dai tecnici emerge che sono stati prelevati dal torrente Concabbia in loc. Forgnengo per un tratto complessivo di circa 100 m.

Le operazioni di prelievo hanno recuperato complessivamente 30 esemplari di Trota Fario (Salmo trutta trutta, Linnaeus, 1758), dei quali 4 sono stati assegnati alla forma atlantica e 26 alla forma mediterranea.

Ai sensi dell'indice di abbondanza (I.A.) è stato attribuito secondo Moyle & Nichols (1973) e definito come nella seguente tabella.

Codice - abbondanza	Descrizione
1 - scarso	(1-3 individui in 50 m lineari)
2 - presente	(4-10 individui in 50 m lineari)
3 - frequente	(11-20 individui in 50 m lineari)
4 - abbondante	(21-50 individui in 50 m lineari)
5 - dominante	(>50 individui in 50 m lineari)

Tabella 13:Indice di abbondanza semi-quantitativo (i.a.) secondo moyle & nichols (1973)

Per quanto riguarda la struttura delle popolazioni ittiche presenti è stato adottato un indice semplice che tiene conto della struttura relativa di popolazione evidenziando come gli individui raccolti nel campionamento si distribuiscono nelle varie classi d'età.

Indice di struttura di popolazione	Livello di struttura di popolazione
1	Popolazione limitata a pochi esemplari
2	Popolazione non strutturata – dominanza delle classi adulte
3	Popolazione non strutturata – dominanza delle classi giovanili
4	Popolazione strutturata, ma non abbondante
5	Popolazione strutturata ed abbondante

Tabella 14: indice di struttura.

Stazione campionamento	Specie	Nome comune	N. tot. esemplari		Indice di struttura di popolazione
Concabbia	Salmo (trutta) trutta	Trota fario	4	1 — scarso	1
Concabbia	Salmo (trutta) trutta	Trota fario mediterranea	26	3 – Frequente	3

Tabella 15: Check-list e parametri biologici attribuiti ad ogni singola specie catturata nelle due diverse stazioni di rilevamento

5 Considerazioni conclusive

Le analisi condotte denotano una condizione complessiva del fiume Cervo coerente con la classificazione ufficiale che si colloca ad un livello ecologico Buono. Per quanto riguarda il torrente Concabbia, le evidenze riscontrate denotano una condizione di sostanziale assenza di perturbazioni del livello complessivo, con limitazioni che appaiono dipendenti da fattori intrinseci.

Non si rilevano nel complesso evidenze di particolare rilievo nel fornire indicazioni di disturbo a carico degli indicatori chimici e biologici e i relativi indici ecologici si attestano a livelli coerenti con il corpo idrico e concordano con indagini precedentemente svolte.

Per quanto attiene alla comunità ittica si rileva una buona presenza di individui che tuttavia, risultando composta da una sola specie con esemplari di origine alloctona, limita il livello di qualità ecologica.

Gli aspetti idromorfologici che emergono dall'indice di funzionalità sono in continuità con indagini precedenti condotte sui medesimi tratti nel corso della procedura istruttoria. Si conferma infatti che l'assetto morfologico complessivo di buona naturalità, limitata da elementi di artificialità e da alterazioni della componente vegetazionale perifluviale.

Rispetto agli indici e alle componenti osservate si rileva una condizione complessiva che può essere considerata Buona, dal momento che, al netto di una generale condizione di naturalità, mancano evidenze solide che non consentono di escludere una condizione di non interferenza rispetto alle condizioni ottimali, necessarie per definire una condizione elevata.

Parma, 20 Giugno 2023

STUDIO ETHOS SRL STRADA DELLA REPUBBLICA,41 43121 PARMA (PR) P.IVA 02706820343

ALLEGATI

Rapporti prova analisi chimiche

Azienda con Sistema di Qualità Certificate — UNI EN ISO 9001 da TÜV ITALIA —

SPETT./LE SIPEA SRL

PIAZZA EUROPA, 21 PASSIRANO

RAPPORTO DI PROVA

N.º DI LABORATORIO		1204	data certificato:	11-mar-21	
CAMPIONE	- 1	ACQUA TORRENTE			
PROVENIENZA		SIPEA SRL			
Ricevuto ii		05-mar-21			
Consegnato da	I	SIPEA SRL			
Etichetta	1	CONC MON			

			VALORI D. Lge 03/04/06 m.* 152, SCARICO IN ACQUE EMPERFICIALI	parte 3° all. SCARICO IN FORMATION	5 tab. 3 MET000
		mg/1	mg/2	mg/1	
COD		2,8	160	500	APAY IRDA CHR 5130
8005		2	40	250	APAT INUA CNR 5120
AMMONIACA TOTALE	(1084+)	0,03	15	30	APAT IRSA CNN 4030
AEOTO BITRICO	(90)	0.22	20	30	APAT IRSA CHE 4020
FOSFORO TOTALE	(9)	< 0,1	10	10	APAT ISSA CHE 3020
ESCHERICHIA COLI	UFC/100ml	< 100	(5000)	~	APAT IRSA CHE 3020

VACONE SUPERIORE AL LINITE COMERCIZIO PER LO SCARGO IN CORFI S'ACQUA SUPERFICIALI,
 VALONE SUPERIORE AL LINITE COMERCIZIO PER LO SCARGO IN PODINTONA.

Qualquia non athinismis apocitizato l'anustie è dia intendansi contre relativa a compjone prélevato e consegnato dal committente. Perfanto il saborativo SECOLATA non assuurre respiriusabilità attune clima la conteporitorizza dei dali anustro tra il campione in oggetto e la intera-partito di matoriale dolla quale asso provienzi.

— Azienda con Sixtema di Qualità Certificata ——
UNI EN ISO 9001 da TÜV ITALIA ——

SPETT./LE SIPEA SRL PIAZZA EUROPA, 21 PASSIRANO

RAPPORTO DI PROVA

N." DI LABORATORIO	1	1205	data certificato:	11-mar-21
CAMPIONE		ACQUA TORRENTE		
PROVENIENZA	1	SIPEA SRL		
Ricevuto II	1	05-mar-21		
Consegnato da	2	SIPEA SRL		
Etichetta	1	CER SOT CAM		

			VALORI D.Ige 83/04/06 m.* 152, SCANICO IN ACQUE SUPERFICIALI			3 METODO		
		ng/I	ng/l	ng/l				
COD		4,3	160	500	APAT	IRGA	CHE	5130
8005		2	40	250	APAT	IRSA.	CRIN	5120
ANMONTACA TOTALE	(NH4+)	0,03	15	30	APAT	IRSA	CSE	4030
AZOTO NITRICO	(90)	0,36	20	30	TASA	IRSA	CHIA	4020
FOSFORO TOTALE	(8)	< 0,1	10	10	APAT	INDA	CSIR.	3020
ESCHERICHIA COLI	UFC/100m1	< 100	(5000)	-	APAT	TREE	CHR	3030

(*) VALONE SOFERIORE AL LIMITE CONSENTITO PER LO SCARIDO IN COMPL D'ACQUA SUPERFICIALI.
(**) VALONE SOFERIORE AL LIMITE CONSENTITO PER LO SCARICO IN FOGRACIOR.

Quature non eliteranti: specificato l'analisi è da mandersi come retable a campione prelivabi e consegnato dal committente. Pertant-il laboratorio BODATA, non assume responsabilità assume crea la campiondenza dei dati analisio las il campione in oggette e la intera partita di materiale datio quale esse processo.

- Azienda con Sistema di Qualità Certificato ----UNI EN ISO 9001 da TÜV ITALIA ---

SPETT./LE SIPEA SRL

PIAZZA EUROPA, 21 **PASSIRANO**

RAPPORTO DI PROVA

< 100

N.º DI LABORATORIO

3562

data certificato:

(5000)

23-giu-21

CAMPIONE

ACQUA TORRENTE

PROVENIENZA

TORRENTE CONCABBIA - BIELLA

Ricevuto il

17-giu-21

Consegnato da SIPEA SRL

Etichetta

COD BODS.

AMMONIACA TOTALE

AZOTO NITRICO

FOSFORO TOTALE

ESCHERICHIA COLI

(NH4+)

UFC/100ml

(10)

(P)

	D.Lgs 03/04/06 m." 152, SCARICO IN ACCOM SUPERFICIALI	parte 3° all.	5 tab.	3 HKT000	
mg/1	mg/l	mg/2			
< 1	160	500	APAT	IRSA CNR 5	130
< 1	40	250	APAT	IRSA CNR 5	120
0,01	15	30	APAT	IRSA CNR 40	020
0,16	20	30	APAT	IRSA CNR 40	020
< 0,1	10	10	APAT	IRSA CNR 30	020

VALUET STATES

(*) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN CORFI D'ACQUA SUPERFICIALI.
(**) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN FORNATURA.

Qualitra non altimenti specificaro l'amina è da intendersi come relativa a campione pretivato e consegnato dal committente. Pertento il laboratorio BIODATA non assume responsabilità alcuna cinca la consepondenza dei dati analtizo tra il campione in oggetto e la intera parita di materiale dulla quale esso proviene.

APAT IRSA CNR 3020

Azienda con Sistema di Qualità Certificato — UNI EN ISO 9001 da TÛV ITALIA —

SPETT./LE SIPEA SRL PIAZZA EUROPA, 21 **PASSIRANO**

RAPPORTO DI PROVA

N.º DI LABORATORIO

3560

23-giu-21

CAMPIONE PROVENIENZA

Ricevuto il

ACQUA TORRENTE

TORRENTE CERBO - BIELLA 17-glu-21

Consegnato da Etichetta

SIPEA SRL SOTTESO CAMPIGLIA

VALORI LIMITE D.Lgs 03/04/06 n.* 152, parte 3* all. 5 tab. 3

		mg/1	HUPERFICIALI	FOGNATURA	METODO
			ng/1	ng/1	
000		< 1	160	500	APAT IRSA CNR 5130
8005		< 1	40	250	APAT IRSA CNR 5120
AMMONIACA TOTALE	(NH4+)	0,02	15	30	APAT IRSA CNR 4030
AZOTO NITRICO	(80)	0,28	20	30	APAT IBSA CNR 4020
FOSFORD TOTALE	(P)	< 0,1	10	10	APAT IRSA CNR 3020
ESCHERICHIA COLI	UFC/100m1	< 100	(5000)		APAT IRSA CNR 3020

(*) VALONE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN COMPLED ACQUA SUPERFICIALL.
 (**) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN FOGNATURA.

Qualora non attrimenti, specificato l'analisi è de intendirsi, conte relativa a campione preterato e consegnato del committente. Perterio il laboratorio BECDATA, non assume responsabilità alcuna circa la compondenza dei del analitoi sa il campione in oppeto e la intere pertra di meterale data quale esso proviene.

Azienda con Sistema di Qualità Certificato —
 UNI EN ISO 9001 da TÜV ITALIA —

SPETT./LE SIPEA SRL PIAZZA EUROPA, 21 PASSIRANO

RAPPORTO DI PROVA

N.º DI LABORATORIO ;

5614

data certificato:

12-ott-21

CAMPIONE PROVENIENZA ACQUA

PROVENIENZ

TORRENTE CERVO

Ricevuto il Consegnato da 06-ott-21

Etichetta

SIPEA SRL

Etichetia :

CER SOT CAM - PRELEVATO 04/10/2021

			VALORI D.Lgs 03/04/06 n.* 152, SCARICO IN ACCRE SUPERFICIALI		5 tab. 3
		mg/1	ng/1	mg/1	
COB		< 2	160	500	APAT IRSA CNR 5135
B005		< 2	40	250	APAT IRSA CNR 5120
AMMONIACA TOTALE	(NR4+)	< 0,01	15	30	APAT IRSA CNR 4030
AZOTO NITRICO	(N)	0,9	20	30	APAT IRSA CNR 4020
FOSFORO TOTALE	(P)	< 0,01	10	10	APAT IRSA CNR 3020
Escherichia coli	UFC/100ml	< 100	(5000)	-	APAT IRSA CNR 7030

(*) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN COMPI D'ACQUA SUPERFICIALI, (**) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN POUNTURA.

Qualora non athimenti specificato fanalisi è da intendersi come relativa a campione prelevato e consegnato dal committente. Pertanto il laboratorio BIODATA non assume responsabilità alcuna circa la comaponderura dei dati analitici tra il campiona in oggetto e la intera partira si materiale dalla quale esso proviene.

Azienda con Sistema di Qualità Certificato UNI EN ISO 9001 da TÜV ITALIA

SPETT./LE SIPEA SRL PIAZZA EUROPA, 21 **PASSIRANO**

RAPPORTO DI PROVA

N.º DI LABORATORIO

5616

data certificato:

12-ott-21

CAMPIONE

ACQUA

PROVENIENZA

TORRENTE CONCABIA

Ricevuto il Consegnato da 06-ott-21

Etichetta

SIPEA SRL

CONC MON - PRELEVATO 04/10/2021

			VALORI D.Lgm 03/04/06 n." 152, SCARICO IN ACQUE SUPERFICIALI		5 tab.	3 MET	000	
		ng/2	mg/l	mg/l				
COD		3	160	500	APAT	IRSA	CNR	5135
BOD5		< 2	40	250	APAT	IRSA	CNR	5120
AMMONIACA TOTALE	(884+)	< 0,01	15	30	APAT	IRSA	CNR	4030
AZOTO MITRICO	(N)	0,3	20	30	APAT	IRSA	CNR	4020
FOSFORO TOTALE	(P)	< 0,01	10	10	APAT	IRSA	CMR	3020
Escherichia coli	OFC/100ml	< 100	(5000)	-	APAT	IRSA	CNR	7030

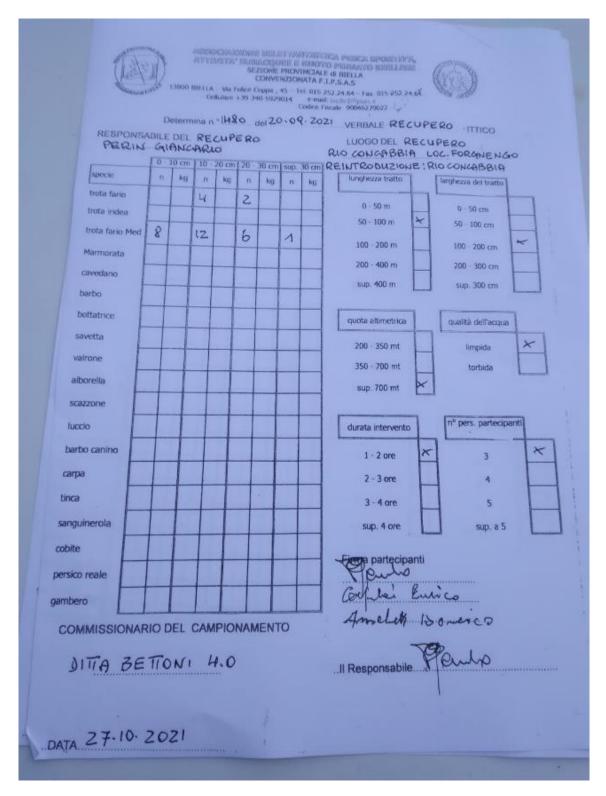
(*) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN CORPI D'ACQUA SUPERFICIALI. (**) VALORE SUPERIORE AL LIMITE CONSENTITO PER LO SCARICO IN FOGNATURA.

Qualora non attrimenti specificato fanalisi è da intendensi come relativa a campione prelevato e consegnato del committente. Pertanto il laboratorio BICOATA non assume maponeabilità alcuna circa la consipondenza dei dali analisci tra il campione in oggetto e la interia parita di materiale della quale esso proviene.

Schede funzionalità fluviale

Bacino	Cervo					Corso d'a	qua	То	orrente Co	oncabbia		
Località	Fognengo			Quota	953	mslm						
Codice	CB-1											
Tratto [m]	646	Alveo mor	bida	4	Superficie	2584	m ²					
Data	01/03/2013	Scheda N°	1									
									funziona	ılità reale	funzion potenzi	
									RS	RD	RS	RD
1) Stato o	 del territorio circo	ostante							20	20	25	25
2) Vegeta	zione presente n	ella fascia pe	rifluviale prim	naria	•				40	40	40	40
2bis) Veg	etazione present	e nella fascia	perifluviale se	econdaria								
3) Ampie	zza delle formazi	oni funzional	i presenti in f	fascia periflu	viale				15	15	15	15
4) Contin	nuità delle formaz	ioni funziona	li presenti in	fascia perifl	uviale				15	15	15	15
5) Condi	zioni idriche								20		20	
6) Effi cie	nza di esondazio	ne							1		1	
7) Substr	ato dell'alveo e st	rutture di rit	enzione degli	i apporti tro	ofi ci				25		25	
8) Erosio	ne								20	20	20	20
9) Sezion	e trasversale								15	•	20	•
10) Idone	eità ittica								20		20	
11) Idron	norfologia								15		15	
12) Com	ponente vegetale	in alveo bag	nato						15		15	
13) Detri	to								15		15	
14) Com	unità macrobento	onica							20		20	

Bacino	Cervo					Corso d'ac	qua	Torrente	Concabbia		
Località	Sponda Cervo			Quota		mslm					
Codice	CB-2										
Tratto [m]	77	Alveo mor	bida	4	Superfici e	308	m ²				
Data	01/02/2013	Scheda N°	2								
								funzio	nalità reale	funzionalità potenziale	
								RS	RD	RS	RD
1) Stato o	 del territorio circ	ostante						20	20	20	20
2) Vegeta	zione presente r	nella fascia pei	ifluviale prin	naria	· I			25	25	40	40
2bis) Veg	etazione present	e nella fascia	oerifluviale s	econdaria							
3) Ampie	zza delle formaz	ioni funzionali	presenti in	fascia periflu	viale	l .		15	15	15	15
4) Continuità delle formazioni funzionali presenti in fascia perifluviale								10	10	15	15
5) Condizioni idriche							20	1	20		
6) Effi cie	nza di esondazio	ne						25		25	



7) Substrato dell'alveo e sti	rutture di rite	nzione degli	apporti trof	ìci		25		25	
8) Erosione						20	20	20	20
9) Sezione trasversale						20		20	
10) Idoneità ittica						20		20	
11) Idromorfologia						20	20		
12) Componente vegetale	in alveo bagna	ato				15		15	
13) Detrito						15		15	
14) Comunità macrobento	14) Comunità macrobentonica					10		10	

Bacino	Cervo					Corso d'ad	qua	Torren	te Concabbia		
Località	Fognengo			Quota	953	mslm					
Codice	CB-1										
Tratto [m]	646	Alveo moi	rbida	4	Superficie	2584	m ²				
Data	01/03/2013	Scheda N°	1								
								fun	zionalità reale	funzionalità potenziale	
								RS	RD	RS	RD
1) Ct-t								20	20	25	25
	del territorio circ			<u> </u>				20	20	25	25
	zione presente r	•						40	40	40	40
2bis) Vege	etazione present	e nella fascia	perifluviale se	econdaria							
3) Ampie:	zza delle formazi	ioni funzional	i presenti in f	ascia periflu	viale			15	15	15	15
4) Contin	uità delle formaz	zioni funziona	di presenti in	fascia perifl	uviale			15	15	15	15
5) Condiz	zioni idriche							20		20	
6) Effi cie	nza di esondazio	ne						1		1	
7) Substra	ato dell'alveo e s	trutture di rit	enzione degl	i apporti tro	ofi ci			25		25	
8) Erosion	ne							20	20	20	20
9) Sezione	e trasversale							15	•	20	
10) Idone	eità ittica							20		20	
11) Idromorfologia						15		15			
12) Componente vegetale in alveo bagnato								15	15		
13) Detri	to							15		15	
14) Com	unità macrobent	onica						20		20	

Verbale recupero ittico

